Plasmodium berghei-induced malaria decreases pain sensitivity in mice

伯氏疟原虫诱发的疟疾降低小鼠的疼痛敏感性

阅读:6
作者:Aboyeji L Oyewole, Oluwole Akinola, Bamidele V Owoyele

Abstract

Various types of pain were reported by people with Plasmodium falciparum and were mostly attributed to a symptom of malarial infection. Neural processes of pain sensation during malarial infection and their contributions to malaria-related death are poorly understood. Thus, these form the focus of this study. Swiss mice used for this study were randomly divided into two groups. Animals in the first group (Pb-infected group) were inoculated with Plasmodium berghei to induce malaria whilst the other group (intact group) was not infected. Formalin test was used to assess pain sensitivity in both groups and using various antagonists, the possible mechanism for deviation in pain sensitivity was probed. Also, plasma and brain samples collected from animals in both groups were subjected to biochemical and/or histological studies. The results showed that Pb-infected mice exhibited diminished pain-related behaviours to noxious chemical. The observed parasite-induced analgesia appeared to be synergistically mediated via µ-opioid, α2 and 5HT2A receptors. When varied drugs capable of decreasing pain threshold (pro-nociceptive drugs) were used, the survival rate was not significantly different in the Pb-infected mice. This showed little or no contribution of the pain processing system to malaria-related death. Also, using an anti-CD68 antibody, there was no immunopositive cell in the brain to attribute the observed effects to cerebral malaria. Although in the haematoxylin and eosin-stained tissues, there were mild morphological changes in the motor and anterior cingulate cortices. In conclusion, the pain symptom was remarkably decreased in the animal model for malaria, and thus, the model may not be appropriate for investigating malaria-linked pain as reported in humans. This is the first report showing that at a critical point, the malaria parasite caused pain-relieving effects in Swiss mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。