Expression and distribution of TRPV2 in rat brain

大鼠脑内TRPV2的表达与分布

阅读:8
作者:Thekkethil Prashant Nedungadi, Mayurika Dutta, Chandra Sekhar Bathina, Michael J Caterina, J Thomas Cunningham

Abstract

Transient receptor potential (TRP) proteins are non-selective cation channels that mediate sensory transduction. The neuroanatomical localization and the physiological roles of isoform TRPV2 in the rodent brain are largely unknown. We report here the neuroanatomical distribution of TRPV2 in the adult male rat brain focusing on the hypothalamus and hindbrain regions involved in osmoregulation, autonomic function and energy metabolism. For this we utilized immunohistochemistry combined with brightfield microscopy. In the forebrain, the densest immunostaining was seen in both the supraoptic nucleus (SON) and the magnocellular division of the paraventricular nucleus (PVN) of the hypothalamus. TRPV2 immunoreactivity was also seen in the organum vasculosum of the lamina terminalis, the median preoptic nucleus and the subfornical organ, in addition to the arcuate nucleus of the hypothalamus (ARH), the medial forebrain bundle, the cingulate cortex and the globus pallidus to name a few. In the hindbrain, intense staining was seen in the nucleus of the solitary tract, hypoglossal nucleus, nucleus ambiguous, and the rostral division of the ventrolateral medulla (RVLM) and some mild staining in the area prostrema. To ascertain the specificity of the TRPV2 antibody used in this paper, we compared the TRPV2 immunoreactivity of wildtype (WT) and knockout (KO) mouse brain tissue. Double immunostaining with arginine vasopressin (AVP) using confocal microscopy showed a high degree of colocalization of TRPV2 in the magnocellular SON and PVN. Using laser capture microdissection (LCM) we also show that AVP neurons in the SON contain TRPV2 mRNA. TRPV2 was also co-localized with dopamine beta hydroxylase (DBH) in the NTS and the RVLM of the hindbrain. Based on our results, TRPV2 may play an important role in several CNS networks that regulate body fluid homeostasis, autonomic function, and metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。