Functional genomics reveals the toxin-antitoxin repertoire and AbiE activity in Serratia

功能基因组学揭示了沙雷氏菌中的毒素-抗毒素库和 AbiE 活性

阅读:4
作者:Hannah G Hampton, Leah M Smith, Shaun Ferguson, Sean Meaden, Simon A Jackson, Peter C Fineran

Abstract

Bacteriophage defences are divided into innate and adaptive systems. Serratia sp. ATCC 39006 has three CRISPR-Cas adaptive immune systems, but its innate immune repertoire is unknown. Here, we re-sequenced and annotated the Serratia genome and predicted its toxin-antitoxin (TA) systems. TA systems can provide innate phage defence through abortive infection by causing infected cells to 'shut down', limiting phage propagation. To assess TA system function on a genome-wide scale, we utilized transposon insertion and RNA sequencing. Of the 32 TA systems predicted bioinformatically, 4 resembled pseudogenes and 11 were demonstrated to be functional based on transposon mutagenesis. Three functional systems belonged to the poorly characterized but widespread, AbiE, abortive infection/TA family. AbiE is a type IV TA system with a predicted nucleotidyltransferase toxin. To investigate the mode of action of this toxin, we measured the transcriptional response to AbiEii expression. We observed dysregulated levels of tRNAs and propose that the toxin targets tRNAs resulting in bacteriostasis. A recent report on a related toxin shows this occurs through addition of nucleotides to tRNA(s). This study has demonstrated the utility of functional genomics for probing TA function in a high-throughput manner, defined the TA repertoire in Serratia and shown the consequences of AbiE induction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。