Effects of OsAOX1a Deficiency on Mitochondrial Metabolism at Critical Node of Seed Viability in Rice

OsAOX1a 缺陷对水稻种子活力关键节点线粒体代谢的影响

阅读:6
作者:Jing Ji, Shuangshuang Lin, Xia Xin, Yang Li, Juanjuan He, Xinyue Xu, Yunxia Zhao, Gefei Su, Xinxiong Lu, Guangkun Yin

Abstract

Mitochondrial alternative oxidase 1a (AOX1a) plays an extremely important role in the critical node of seed viability during storage. However, the regulatory mechanism is still poorly understood. The aim of this study was to identify the regulatory mechanisms by comparing OsAOX1a-RNAi and wild-type (WT) rice seed during artificial aging treatment. Weight gain and time for the seed germination percentage decreased to 50% (P50) in OsAOX1a-RNAi rice seed, indicating possible impairment in seed development and storability. Compared to WT seeds at 100%, 90%, 80%, and 70% germination, the NADH- and succinate-dependent O2 consumption, the activity of mitochondrial malate dehydrogenase, and ATP contents all decreased in the OsAOX1a-RNAi seeds, indicating that mitochondrial status in the OsAOX1a-RNAi seeds after imbibition was weaker than in the WT seeds. In addition, the reduction in the abundance of Complex I subunits showed that the capacity of the mitochondrial electron transfer chain was significantly inhibited in the OsAOX1a-RNAi seeds at the critical node of seed viability. The results indicate that ATP production was impaired in the OsAOX1a-RNAi seeds during aging. Therefore, we conclude that mitochondrial metabolism and alternative pathways were severely inhibited in the OsAOX1a-RNAi seeds at critical node of viability, which could accelerate the collapse of seed viability. The precise regulatory mechanism of the alternative pathway at the critical node of viability needs to be further analyzed. This finding might provide the basis for developing monitoring and warning indicators when seed viability declines to the critical node during storage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。