Highly sensitive biomolecular interaction detection method using optical bound/free separation with grating-coupled surface plasmon field-enhanced fluorescence spectroscopy (GC-SPFS)

利用光栅耦合表面等离子体场增强荧光光谱(GC-SPFS)进行光学结合/自由分离的高灵敏度生物分子相互作用检测方法

阅读:4
作者:Takatoshi Kaya, Satoru Nagatoishi, Kosuke Nagae, Yukito Nakamura, Kohei Tsumoto

Abstract

Grating-coupled surface plasmon field-enhanced fluorescence spectroscopy (GC-SPFS) with optical bound/free (B/F) separation technique was developed by employing a highly directional fluorescence with polarization of surface plasmon-coupled emission (SPCE) to realize highly sensitive immunoassay regardless of the ligand affinity. A highly sensitive immunoassay system with GC-SPFS was constructed using a plastic sensor chip reproducibly fabricated in-house by nanoimprinting and applied to the quantitative detection of an anti-lysozyme single-domain antibody (sdAb), to compare conventional washing B/F separation with optical B/F separation. Differences in the affinity of the anti-lysozyme sdAb, induced by artificial mutation of only one amino acid residue in the variable domain were attributed to higher sensitivity than that of the conventional Biacore surface plasmon resonance (SPR) system. The detection limit (LOD; means of six replicates of the zero standard plus three standard deviations) of the GC-SPFS immunoassay with optical B/F separation, was estimated to be 1.2 ng/ml with the low-affinity ligand (mutant sdAb Y52A: KD level was of the order of 10-7 ~ 10-6 M) and was clearly improved as compared to that (LOD: 9.4 ng/ml) obtained with the conventional washing B/F separation. These results indicate that GC-SPFS with the optical B/F separation technique offers opportunities to re-evaluate low-affinity biomaterials that are neither fully utilized nor widespread, and could facilitate the creation of novel and innovative methods in drug and diagnostic development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。