Identification of genes regulated by lipids from seaweed Susabinori (Pyropia yezoensis) involved in the improvement of hepatic steatosis: Insights from RNA-Seq analysis in obese db/db mice

鉴定参与改善肝脂肪变性的海藻 Susabinori (Pyropia yezoensis) 脂质调控基因:从肥胖 db/db 小鼠的 RNA-Seq 分析中获得的见解

阅读:5
作者:Sayaka Iizasa, Koji Nagao, Keisuke Tsuge, Yukio Nagano, Teruyoshi Yanagita

Abstract

Hepatic steatosis is an early stage in the progression of non-alcoholic fatty liver disease (NAFLD) and can lead to the development of non-alcoholic steatohepatitis (NASH), a major cause of liver-related morbidity and mortality. Identification of dietary components that can alleviate hepatic steatosis is crucial for developing effective therapeutic strategies for NAFLD. Recently, we demonstrated the impact of lipids extracted from the marine red alga Susabinori (Pyropia yezoensis) in a murine model of type 2-diabete (db/db). We found that Susabinori lipids (SNL), abundant in eicosapentaenoic acid (EPA)-containing polar lipids, protected against obesity-induced hepatic steatosis in db/db mice. To understand the specific genes or biological pathways underlying the effects of SNL, we conducted RNA-Seq analysis of the hepatic transcriptome. By performing comparative analysis of differentially expressed genes between normal mice and db/db mice consuming a control diet, as well as SNL-fed db/db mice, we identified the 15 SNL-dependent up-regulated genes that were down-regulated in db/db mice but up-regulated by SNL feeding. Gene ontology and pathway analysis on these 15 genes demonstrated a significant association with the metabolisms of arachidonic acid (AA) and linoleic acid (LA). Furthermore, we observed alterations in the expression levels of monoacylglycerol lipase (Magl) and fatty acid-binding protein 4 (Fabp4) in the SNL-fed db/db mice, both of which are implicated in AA and LA metabolism. Additionally, the livers of SNL-fed db/db mice exhibited reduced levels of AA and LA, but a high accumulation of EPA. In conclusion, the SNL diet might affect the metabolisms of AA and LA, which contribute to the improvement of hepatic steatosis. Our findings provide insights into the molecular mechanisms underlying the beneficial effects of SNL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。