Biogenesis of RNase P RNA from an intron requires co-assembly with cognate protein subunits

内含子中 RNase P RNA 的生物合成需要与同源蛋白质亚基共同组装

阅读:5
作者:Geeta Palsule, Venkat Gopalan, Amanda Simcox

Abstract

RNase P RNA (RPR), the catalytic subunit of the essential RNase P ribonucleoprotein, removes the 5' leader from precursor tRNAs. The ancestral eukaryotic RPR is a Pol III transcript generated with mature termini. In the branch of the arthropod lineage that led to the insects and crustaceans, however, a new allele arose in which RPR is embedded in an intron of a Pol II transcript and requires processing from intron sequences for maturation. We demonstrate here that the Drosophila intronic-RPR precursor is trimmed to the mature form by the ubiquitous nuclease Rat1/Xrn2 (5') and the RNA exosome (3'). Processing is regulated by a subset of RNase P proteins (Rpps) that protects the nascent RPR from degradation, the typical fate of excised introns. Our results indicate that the biogenesis of RPR in vivo entails interaction of Rpps with the nascent RNA to form the RNase P holoenzyme and suggests that a new pathway arose in arthropods by coopting ancient mechanisms common to processing of other noncoding RNAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。