Enhanced Directional Migration of Cancer Stem Cells in 3D Aligned Collagen Matrices

癌症干细胞在三维排列胶原基质中的定向迁移增强

阅读:6
作者:Arja Ray, Zachary M Slama, Rachel K Morford, Samantha A Madden, Paolo P Provenzano

Abstract

Directed cell migration by contact guidance in aligned collagenous extracellular matrix (ECM) is a critical enabler of breast cancer dissemination. The mechanisms of this process are poorly understood, particularly in 3D, in part because of the lack of efficient methods to generate aligned collagen matrices. To address this technological gap, we propose a simple method to align collagen gels using guided cellular compaction. Our method yields highly aligned, acellular collagen constructs with predictable microstructural features, thus providing a controlled microenvironment for in vitro experiments. Quantifying cell behavior in these anisotropic constructs, we find that breast carcinoma cells are acutely sensitive to the direction and extent of collagen alignment. Further, live cell imaging and analysis of 3D cell migration reveals that alignment of collagen does not alter the total motility of breast cancer cells, but simply redirects their migration to produce largely one-dimensional movement. However, a profoundly enhanced motility in aligned collagen matrices is observed for the subpopulation of carcinoma cells with high tumor initiating and metastatic capacity, termed cancer stem cells (CSCs). Analysis of the biophysical determinants of cell migration show that nuclear deformation is not a critical factor associated with the observed increases in motility for CSCs. Rather, smaller cell size, a high degree of phenotypic plasticity, and increased protrusive activity emerge as vital facilitators of rapid, contact-guided migration of CSCs in aligned 3D collagen matrices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。