Depressed TFAM promotes acetaminophen-induced hepatotoxicity regulated by DDX3X-PGC1α-NRF2 signaling pathway

TFAM 降低促进对乙酰氨基酚诱导的肝毒性,由 DDX3X-PGC1α-NRF2 信号通路调控

阅读:5
作者:Sisi Chen #, Yaling Cao #, Zihao Fan #, Ling Xu, Zhenzhen Pan, Yao Gao, Linlin Wei, Qiaoxin Wei, Yuan Tian, Xiangying Zhang, Mei Liu, Feng Ren

Background

Acetaminophen (APAP)-induced acute liver injury (AILI) is the most prevalent cause of acute liver failure and mitochondrial dysfunction plays a dominant role in the pathogenesis of AILI. Mitochondrial transcription factor A (TFAM) is an important marker for maintaining mitochondrial functional homeostasis, but its functions in AILI are unclear. This study aimed to investigate the function of TFAM and its regulatory molecular mechanism in the progression of AILI.

Conclusions

This study demonstrates that depressed hepatic TFAM plays a key role in the pathogenesis of AILI, which is regulated by the DDX3X-PGC1α-NRF2 signaling pathway.

Methods

The roles of TFAM and DEAD (Asp-Glu-Ala-Asp) box polypeptide 3 X-linked (DDX3X) in AILI were determined with TFAM overexpression and DDX3X knockdown, respectively.

Results

TFAM expression was suppressed in AILI patients. TFAM overexpression alleviated liver necrosis and mitochondrial dysfunction. Treatment of the AILI mice model with N-acetylcysteine (NAC), a drug used to treat APAP overdose, resulted in significant TFAM activation. In vivo experiments confirmed that TFAM expression was negatively regulated by DDX3X. Mechanistic studies showed that nuclear respiratory factor 2 (NRF-2), a key regulator of TFAM, was selectively activated after DDX3X knockdown via activated peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α), in vivo and in vitro. Conclusions: This study demonstrates that depressed hepatic TFAM plays a key role in the pathogenesis of AILI, which is regulated by the DDX3X-PGC1α-NRF2 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。