A new insight of cadmium-induced cellular evidence of autophagic-associated spermiophagy during spermatogenesis

对精子发生过程中镉诱导自噬相关精子吞噬的细胞证据的新认识

阅读:6
作者:Waseem Ali, Kai Deng, Jian Sun, Yonggang Ma, Zongping Liu, Hui Zou

Abstract

Autophagy plays a dynamic role in spermatozoa development during spermatogenesis. However, the disruption of autophagic flux induces cell death under metal toxicity and severe oxidative stress. Therefore, we hypothesized that cadmium-induced autophagy might be involved in this mechanism. To verify this hypothesis, we studied cadmium-induced cellular evidence of autophagic-associated spermiophagy within the testis. In the present study, treatment with cadmium caused nuclear depressive disorders and vacuolated mitochondrial damage of Sertoli cells. In addition, spermiophagy through the cellular evidence of spermatozoa phagocytosis, the high lysosomal activity (lysosome engulfment and phagolysosome), and autophagy activity (autolysosome and autophagosome) were observed in the Sertoli cells. The immunohistochemistry of lysosomal membrane protein (LAMP2) to target the phagocytosis of spermatozoa revealed that the immunoreactivity of LAMP2 was overstimulated in the luminal compartment of testis's seminiferous tubules. In addition, the immunohistochemistry and immunofluorescence of autophagy-related protein and microtubule-associated light chain (LC3) results showed the strong immunoreactivity and immunosignaling of LC3 in the Sertoli cells of the testis. Moreover, cadmium caused the overactivation of the expression level of autophagy-related proteins, autophagy-related gene (ATG7), (ATG5), beclin1, LC3, sequestosome 1 (P62), and LAMP2 which were confirmed by western blotting. In summary, this study demonstrated that hazards related to cadmium-induced autophagic-associated spermiophagy with the disruption of autophagic flux, providing new insights into the toxicity of cadmium in mammals and representing a high risk to male fertility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。