Determination of metal ion transport rate of human ZIP4 using stable zinc isotopes

使用稳定锌同位素测定人类 ZIP4 的金属离子转运速率

阅读:5
作者:Yuhan Jiang, Keith MacRenaris, Thomas V O'Halloran, Jian Hu

Abstract

The essential microelement zinc is absorbed in the small intestine mainly by the zinc transporter ZIP4, a representative member of the Zrt/Irt-like protein (ZIP) family. ZIP4 is reportedly upregulated in many cancers, making it a promising oncology drug target. To date, there have been no reports on the turnover number of ZIP4, which is a crucial missing piece of information needed to better understand the transport mechanism. In this work, we used a nonradioactive zinc isotope, 70Zn, and inductively coupled plasma mass spectrometry to study human ZIP4 (hZIP4) expressed in Human embryonic kidney 293 cells. Our data showed that 70Zn can replace the radioactive 65Zn as a tracer in kinetic evaluation of hZIP4 activity. This approach, combined with the quantification of the cell surface expression of hZIP4 using biotinylation or surface-bound antibody, allowed us to estimate the apparent turnover number of hZIP4 to be in the range of 0.08 to 0.2 s-1. The turnover numbers of the truncated hZIP4 variants are significantly smaller than that of the full-length hZIP4, confirming a crucial role for the extracellular domain in zinc transport. Using 64Zn and 70Zn, we measured zinc efflux during the cell-based transport assay and found that it has little effect on the zinc import analysis under these conditions. Finally, we demonstrated that use of laser ablation inductively coupled plasma-TOF-mass spectrometry on samples applied to a solid substrate significantly increased the throughput of the transport assay. We envision that the approach reported here can be applied to the studies of metal transporters beyond the ZIP family.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。