Evaluation of Antimicrobial Interventions against E. coli O157:H7 on the Surface of Raw Beef to Reduce Bacterial Translocation during Blade Tenderization

评估针对生牛肉表面大肠杆菌 O157:H7 的抗菌干预措施,以减少刀片嫩化过程中的细菌易位

阅读:6
作者:Peter M Muriana, Jackie Eager, Brent Wellings, Brad Morgan, Jacob Nelson, Kalpana Kushwaha

Abstract

The US Department of Agriculture, Food Safety Inspection Service (USDA-FSIS) considers mechanically-tenderized beef as "non-intact" and a food safety concern because of the potential for translocation of surface Escherichia coli O157:H7 into the interior of the meat that may be cooked "rare or medium-rare" and consumed. We evaluated 14 potential spray interventions on E. coli O157:H7-inoculated lean beef wafers (~10&sup6; CFU/cm², n = 896) passing through a spray system (18 s dwell time, ~40 pounds per square inch, PSI) integrated into the front end of a Ross TC-700MC tenderizer. Inoculated and processed beef wafers were stomached with D/E neutralizing broth and plated immediately, or were held in refrigerated storage for 1-, 7-, or 14-days prior to microbial enumeration. Seven antimicrobials that showed better performance in preliminary screening on beef wafers were selected for further testing on beef subprimals in conjunction with blade tenderization. Boneless top sirloin beef subprimals were inoculated at ~2 × 10&sup4; CFU/cm² with a four-strain cocktail of E. coli O157:H7 and passed once, lean side up, through an integrated spray system and blade tenderizer. Core samples obtained from each subprimal were examined for the presence/absence of E. coli O157:H7. The absence of E. coli O157:H7 in core samples correlated with the ability of the antimicrobials to reduce bacterial levels on the surface of beef prior to blade tenderization.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。