Vitamin D and rosuvastatin alleviate type-II diabetes-induced cognitive dysfunction by modulating neuroinflammation and canonical/noncanonical Wnt/β-catenin signaling

维生素 D 和瑞舒伐他汀通过调节神经炎症和经典/非经典 Wnt/β-catenin 信号传导缓解 II 型糖尿病引起的认知功能障碍

阅读:8
作者:Muhammad Muneeb, Suzan M Mansou, Samira Saleh, Reham A Mohammed

Background

Type-II diabetes mellitus (T2DM) is a major risk factor for cognitive impairment. Protecting the brain environment against inflammation, and neurodegeneration, as well as preservation of the BBB veracity through modulating the crosstalk between insulin/AKT/GSK-3β and Wnt/β-catenin signaling, might introduce novel therapeutic targets.

Conclusion

The current findings have accentuated the neuroprotective potential of VitD and RSV and provide new incentives to expand their use in T2DM-induced cognitive and memory decline. This study also suggests a superior benefit of combining both treatments over either drug alone.

Methods

T2DM was induced by a high-fat sucrose diet and a single streptozotocin (STZ) dose. Diabetic rats were allocated into a diabetic control and three groups treated with RSV (15 mg/kg/day, PO), VitD (500 IU/kg/day, PO), or their combination.

Purpose

This study aimed at exploring the possible neuroprotective potential of vitamin D3 (VitD) and/or rosuvastatin (RSV) in T2DM-induced cognitive deficits.

Results

Administration of VitD and/or RSV mitigated T2DM-induced metabolic abnormalities and restored the balance between the anti-inflammatory, IL 27 and the proinflammatory, IL 23 levels in the hippocampus. In addition, they markedly activated both the canonical and noncanonical Wnt/β-catenin cassettes with stimulation of their downstream molecular targets. VitD and/or RSV upregulated insulin and α7 nicotinic acetylcholine (α7nACh) receptors gene expression, as well as blood-brain barrier integrity markers including Annexin A1, claudin 3, and VE-cadherin. Also, they obliterated hippocampal ApoE-4 content, Tau hyperphosphorylation, and Aβ deposition. These biochemical changes were reflected as improved behavioral performance in Morris water maze and novel object recognition tests and restored hippocampal histological profile.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。