DPP-IV Inhibitory Peptide against In Vitro Gastrointestinal Digestion Derived from Goat's Milk Protein and Its Activity Enhancement via Amino Acid Substitution

羊乳蛋白DPP-IV体外胃肠消化抑制肽及其氨基酸取代增强活性

阅读:6
作者:Baoyuan He, Yanhui Lian, Haiyan Xue, Yan Zhou, Yi Wei, Jun Ma, Yalin Tan, Yawen Wu

Abstract

Goat milk protein can release a variety of bioactive peptides after digestion, while most of them are digested into free amino acids or dipeptides via the GI tract. We investigated the peptide profiles of goat milk protein following in vitro gastrointestinal digestion using LC-MS/MS and identified 683 bioactive peptides, including 105 DPP-IV inhibitory peptides. Among these peptides, ILDKVGINY (IL), derived from β-lactoglobulin, was found to be high in content and resistance to digestion. Herein, we explore the effect of amino acid residue substitution at the second N-terminus on its DPP-IV inhibitory activity. Three 9 polypeptide fragments (peptide IL, IP, and II) were synthesized and subjected to molecular docking and activity analysis. The peptide IL demonstrated the highest affinity for DPP-IV with a binding energy of -8.4 kcal/mol and a moderate IC50 value of 1.431 mg/mL determined based on the Caco-2 cell model. The replacement of specific amino acid residues by Pro and Leu led to an increase in the hydrophobic force interaction between the inhibitor peptide and DPP-IV. The inhibition rates of the three peptides were significantly different (p < 0.05). Peptide II containing an Ile residue instead of Leu resulted in a significant enhancement of DPP-IV inhibitory activity, with an IC50 value of 0.577 mg/mL. The GRAVY changes in the three peptides were consistent with the trend of the inhibitory rates. Therefore, the GRAVY of peptides and branch-chain amino acids should be considered in its activity improvement. The present study revealed the presence and activity of DPP-IV inhibitory peptides in goat milk, providing important insights for further investigation of their potential food functionality and health benefits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。