Rice osa-miR171c Mediates Phase Change from Vegetative to Reproductive Development and Shoot Apical Meristem Maintenance by Repressing Four OsHAM Transcription Factors

水稻 osa-miR171c 通过抑制四种 OsHAM 转录因子介导从营养生长到生殖生长的阶段转变以及茎尖分生组织的维持

阅读:3
作者:Tian Fan, Xiumei Li, Wu Yang, Kuaifei Xia, Jie Ouyang, Mingyong Zhang

Abstract

Phase change from vegetative to reproductive development is one of the critical developmental steps in plants, and it is regulated by both environmental and endogenous factors. The maintenance of shoot apical meristem (SAM) identity, miRNAs and flowering integrators are involved in this phase change process. Here, we report that the miRNA osa-miR171c targets four GRAS (GAI-RGA-SCR) plant-specific transcription factors (OsHAM1, OsHAM2, OsHAM3, and OsHAM4) to control the floral transition and maintenance of SAM indeterminacy in rice (Oryza sativa). We characterized a rice T-DNA insertion delayed heading (dh) mutant, where the expression of OsMIR171c gene is up-regulated. This mutant showed pleiotropic phenotypic defects, including especially prolonged vegetative phase, delayed heading date, and bigger shoot apex. Parallel expression analysis showed that osa-miR171c controlled the expression change of four OsHAMs in the shoot apex during floral transition, and responded to light. In the dh mutant, the expression of the juvenile-adult phase change negative regulator osa-miR156 was up-regulated, expression of the flowering integrators Hd3a and RFT1 was inhibited, and expression of FON4 negative regulators involved in the maintenance of SAM indeterminacy was also inhibited. From these data, we propose that the inhibition of osa-miR171c-mediated OsHAM transcription factors regulates the phase transition from vegetative to reproductive development by maintaining SAM indeterminacy and inhibiting flowering integrators.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。