Identification and quantification of defective virus genomes in high throughput sequencing data using DVG-profiler, a novel post-sequence alignment processing algorithm

使用 DVG-profiler(一种新颖的后序列比对处理算法)识别和量化高通量测序数据中的缺陷病毒基因组

阅读:5
作者:Trent J Bosma, Konstantinos Karagiannis, Luis Santana-Quintero, Natalia Ilyushina, Tatiana Zagorodnyaya, Svetlana Petrovskaya, Majid Laassri, Raymond P Donnelly, Steven Rubin, Vahan Simonyan, Christian J Sauder

Abstract

Most viruses are known to spontaneously generate defective viral genomes (DVG) due to errors during replication. These DVGs are subgenomic and contain deletions that render them unable to complete a full replication cycle in the absence of a co-infecting, non-defective helper virus. DVGs, especially of the copyback type, frequently observed with paramyxoviruses, have been recognized to be important triggers of the antiviral innate immune response. DVGs have therefore gained interest for their potential to alter the attenuation and immunogenicity of vaccines. To investigate this potential, accurate identification and quantification of DVGs is essential. Conventional methods, such as RT-PCR, are labor intensive and will only detect primer sequence-specific species. High throughput sequencing (HTS) is much better suited for this undertaking. Here, we present an HTS-based algorithm called DVG-profiler to identify and quantify all DVG sequences in an HTS data set generated from a virus preparation. DVG-profiler identifies DVG breakpoints relative to a reference genome and reports the directionality of each segment from within the same read. The specificity and sensitivity of the algorithm was assessed using both in silico data sets as well as HTS data obtained from parainfluenza virus 5, Sendai virus and mumps virus preparations. HTS data from the latter were also compared with conventional RT-PCR data and with data obtained using an alternative algorithm. The data presented here demonstrate the high specificity, sensitivity, and robustness of DVG-profiler. This algorithm was implemented within an open source cloud-based computing environment for analyzing HTS data. DVG-profiler might prove valuable not only in basic virus research but also in monitoring live attenuated vaccines for DVG content and to assure vaccine lot to lot consistency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。