Unraveling the roles of aromatic cluster side-chain interactions on the structural stability and functional significance of psychrophilic Sphingomonas sp. glutaredoxin 3

揭示芳香簇侧链相互作用对嗜冷鞘氨醇单胞菌谷胱甘肽 3 的结构稳定性和功能意义的影响

阅读:4
作者:Trang Van Tran, Trang Hoang, Sei-Heon Jang, ChangWoo Lee

Abstract

This study investigates the impact of aromatic cluster side-chain interactions in Grx3 (SpGrx3) from the psychrophilic Arctic bacterium Sphingomonas sp. Grx3 is a class I oxidoreductase with a unique parallel arrangement of aromatic residues in its aromatic cluster, unlike the tetrahedral geometry observed in Trxs. Hydrophilic-to-hydrophobic substitutions were made in the aromatic cluster, in β1 (E5V and Y7F), adjacent β2 (Y32F and Y32L), both β1 and β2 (E5V/Y32L), and short α2 (R47F). The hydrophobic substitutions, particularly those at or near Tyr7 (E5V, Y7F, Y32F, and R47F), increased melting temperatures and conformational stability, whereas disrupting β1-β2 interactions (Y32L and E5V/Y32L) led to structural instability of SpGrx3. However, excessive hydrophobic interactions (Y7F and E5V/Y32L) caused protein aggregation at elevated temperatures. All mutations resulted in a reduction in α-helical content and an increase in β-strand content. The R47F mutant, which formed dimers and exhibited the highest β-strand content, showed increased conformational flexibility and a significant decrease in catalytic rate due to the disturbance of β1-α2 interactions. In summary, the configuration of the aromatic cluster, especially Tyr7 in the buried β1 and Arg47 in the short α2, played crucial roles in maintaining the active conformation of SpGrx3 and preventing its protein aggregation. These modifications, reducing hydrophobicity in the central β-sheet, distinguish Grx3 from other Trx-fold proteins, highlighting evolutionary divergence within the Trx-fold superfamily and its functional versatility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。