DNA base sequence effects on bulky lesion-induced conformational heterogeneity during DNA replication

DNA碱基序列对DNA复制过程中大块病变诱导的构象异质性的影响

阅读:6
作者:Ang Cai, Katie A Wilson, Satyakam Patnaik, Stacey D Wetmore, Bongsup P Cho

Abstract

4-Aminobiphenyl (ABP) and its structure analog 2-aminofluorene (AF) are well-known carcinogens. In the present work, an unusual sequence effect in the 5'-CTTCTG1G2TCCTCATTC-3' DNA duplex is reported for ABP- and AF-modified G. Specifically, the ABP modification at G1 resulted in a mixture of 67% major groove B-type (B) and 33% stacked (S) conformers, while at the ABP modification at G2 exclusively resulted in the B-conformer. The AF modification at G1 and G2 lead to 25%:75% and 83%:17% B:S population ratios, respectively. These differences in preferred conformation are due to an interplay between stabilizing (hydrogen bonding and stacking that is enhanced by lesion planarity) and destabilizing (solvent exposure) forces at the lesion site. Furthermore, while the B-conformer is a thermodynamic stabilizer and the S-conformer is a destabilizer in duplex settings, the situation is reversed at the single strands/double strands (ss/ds) junction. Specifically, the twisted biphenyl is a better stacker at the ss/ds junction than the coplanar AF. Therefore, the ABP modification leads to a stronger strand binding affinity of the ss/ds junction than the AF modification. Overall, the current work provides conformational insights into the role of sequence and lesion effects in modulating DNA replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。