Technology comparisons for anti-therapeutic antibody and neutralizing antibody assays in the context of an anti-TNF pharmacokinetic study

抗 TNF 药代动力学研究中抗治疗抗体和中和抗体检测的技术比较

阅读:22
作者:Kelly M Loyet, Rong Deng, Wei-Ching Liang, Yan Wu, Henry B Lowman, Laura E DeForge

Abstract

A single-dose cynomolgus monkey pharmacokinetic study was performed comparing two monoclonal anti-TNF antibodies (mAbs), GNExTNFvF and Humira. Normal pharmacokinetic profiles were observed over the first week of the study, followed by a rapid drop in serum mAb levels after day 8. In order to determine whether an anti-therapeutic antibody (ATA) response led to the abnormal clearance of antibody in this study, ATA assays were developed using two electrochemiluminescent technologies, BioVeris and Meso Scale Discovery (MSD). Characterization of the assays demonstrated that the two platforms gave similar sensitivities and tolerance to the presence of therapeutic antibody. Analysis of the cynomolgus monkey serum samples revealed that all animals developed significant ATA titers with log titer values of 2-4, with the BioVeris and MSD technologies giving very similar results. Immunodepletion studies confirmed the CDR-specificity of the ATA response for the GNExTNFvF-dosed cynos, although the Humira-dosed cynos showed both CDR-specific and human IgG1 framework-specific ATAs. To further characterize the ATA response, neutralizing antibody (NAb) assays were developed using two different approaches, flow cytometry and MSD. Flow cytometry and MSD cell-binding assays used Jurkat cells transfected with noncleavable TNF (huTNF(NC)). Neutralizing activity was assessed by the ability of ATA-positive serum samples to block the binding of biotinylated anti-TNF to huTNF(NC) Jurkat cells, showing that all but one animal developed neutralizing antibodies. Although both technologies displayed similar trends, the MSD approach showed greater differentiation between samples and could detect a broader range of neutralizing activities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。