Cholesterol interactions with fluid-phase phospholipids: effect on the lateral organization of the bilayer

胆固醇与液相磷脂的相互作用:对双层横向组织的影响

阅读:5
作者:Katrin K Halling, Bodil Ramstedt, Joel H Nyström, J Peter Slotte, Thomas K M Nyholm

Abstract

The lateral organization of lipids and proteins in cell membranes is recognized as an important factor in several cellular processes. Cholesterol is thought to function as a modulator of the lateral segregation of lipids into cholesterol-poor and cholesterol-rich domains. We investigated how the affinity of cholesterol for different phospholipids, as seen in cholesterol partitioning between methyl-beta-cyclodextrin and large unilamellar vesicles, was reflected in the lateral organization of lipids in complex bilayers. We especially wanted to determine how the low-T(m) lipid affected the lateral structure. Partition experiments showed that cholesterol had a higher affinity for N-oleoyl-sphingomyelin (OSM) than for palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers, but the highest preference was for N-palmitoyl-sphingomyelin (PSM)-containing bilayers. Partial phase diagrams of POPC/PSM/cholesterol and OSM/PSM/cholesterol bilayers at 23 degrees C and 37 degrees C were used to gain insight into the lateral organization of lipids in bilayers. Analysis of phase diagrams revealed that the phospholipid composition of cholesterol-poor and cholesterol-rich domains reflected the affinity that cholesterol exhibited toward bilayers composed of different lipids. Therefore, the determined affinity of cholesterol for different phospholipid bilayers was useful in predicting the cholesterol-induced lateral segregation of lipids in complex bilayers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。