Alamethicin-induced electrical long distance signaling in plants

阿拉美辛诱导的植物电长距离信号传导

阅读:5
作者:Heiko Maischak, Matthias R Zimmermann, Hubert H Felle, Wilhelm Boland, Axel Mithöfer

Abstract

Systemic signals induced by wounding and/or pathogen or herbivore attack may be realized by either chemical or mechanical signals. In plants a variety of electrical phenomena have been described and may be considered as signal-transducing events; such as variation potentials (VPs) and action potentials (APs) which propagate over long distances and hence are able to carry information from organ to organ. In addition, we recently described a new type of electrical long-distance signal that propagates systemically, i.e. from leaf to leaf, the 'system potential' (SP). This was possible only by establishing a non-invasive method with micro-electrodes positioned in sub-stomatal cavities of open stomata and recording apoplastic responses. Using this technical approach, we investigated the function of the peptaibole alamethicin (ALA), a channel-forming peptide from Trichoderma viride, which is widely used as agent to induce various physiological and defence responses in eukaryotic cells including plants. Although the ability of ALA to initiate changes in membrane potentials in plants has always been postulated it has never been demonstrated. Here we show that both local and long-distance electrical signals, namely depolarization, can be induced by ALA treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。