Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells

静止成体神经干细胞中转录因子结合位点的全基因组鉴定

阅读:5
作者:Shradha Mukherjee, Jenny Hsieh

Abstract

Transcription factors bind to specific DNA sequences and control the transcription rate of nearby genes in the genome. This activation or repression of gene expression is further potentiated by epigenetic modifications of histones with active and silent marks, respectively. Resident adult stem cells in the hematopoietic system, skin, and brain exist in a non-proliferative quiescent resting state. When quiescent stem cells become activated and transition to dividing progenitors and distinct cell types, they can replenish and repair tissue. Thus, determination of the position of transcription factor binding and histone epigenetic modification on the chromatin is an essential step toward understanding the gene regulation of quiescent and proliferative adult stem cells for potential applications in regenerative medicine. Genome-wide transcription factor occupancy and histone modifications on the genome can be obtained by assessing DNA-protein interaction through next-generation chromatin immunoprecipitation sequencing technology (ChIP-seq). This chapter outlines the protocol to perform, analyze, and validate ChIP-seq experiments that can be used to identify protein-DNA interactions and histone marks on the chromatin. The methods described here are applicable to quiescent and proliferative neural stem cells, and a wide range of other cellular systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。