A cytochrome c551 mediates the cyclic electron transport chain of the anoxygenic phototrophic bacterium Roseiflexus castenholzii

细胞色素 c551 介导不产氧光养细菌 Roseiflexus castenholzii 的循环电子传递链

阅读:12
作者:Lu Yu, Zhenzhen Min, Menghua Liu, Yueyong Xin, Aokun Liu, Jian Kuang, Wenping Wu, Jingyi Wu, Huimin He, Jiyu Xin, Robert E Blankenship, Changlin Tian, Xiaoling Xu

Abstract

Roseiflexus castenholzii is a gram-negative filamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain (ETC). The ETC is composed of a reaction center (RC)-light-harvesting (LH) complex (rcRC-LH); an alternative complex III (rcACIII), which functionally replaces the cytochrome bc1/b6f complex; and the periplasmic electron acceptor auracyanin (rcAc). Although compositionally and structurally different from the bc1/b6f complex, rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc. However, rcACIII-mediated electron transfer (which includes both an intraprotein route and a downstream route) has not been clearly elucidated, nor have the details of cyclic ETC. Here, we identify a previously unknown monoheme cytochrome c (cyt c551) as a novel periplasmic electron acceptor of rcACIII. It reduces the light-excited rcRC-LH to complete a cyclic ETC. We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance (EPR), spectroelectrochemistry, and enzymatic and structural analyses. We find that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors (rcAc and cyt c551), which eventually reduce the rcRC to form the complete cyclic ETC. This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our understanding of the diversity and molecular evolution of prokaryotic ETCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。