Abstract
Dynamic shuttling of proteins between the nucleus and cytoplasm orchestrates vital functions in eukaryotes. Here, we reveal the multifaceted functions of Arabidopsis Sin3-associated protein 18 kDa (SAP18) in the regulation of development and heat-stress tolerance. Proteomic analysis demonstrated that SAP18 is a core component of the nuclear apoptosis- and splicing-associated protein (ASAP) complex in Arabidopsis, contributing to the precise splicing of genes associated with leaf development. Genetic analysis further confirmed the critical role of SAP18 in different developmental processes as part of the ASAP complex, including leaf morphogenesis and flowering time. Interestingly, upon heat shock, SAP18 translocates from the nucleus to cytoplasmic stress granules and processing bodies. The heat-sensitive phenotype of a SAP18 loss-of-function mutant revealed a novel role for SAP18 in plant thermoprotection. These findings significantly expand our understanding of the relevance of SAP18 for plant growth, linking nuclear splicing with cytoplasmic stress responses and providing new perspectives for future exploration of plant thermotolerance mechanisms.
