Barrier-assisted vapor phase CVD of large-area MoS2 monolayers with high spatial homogeneity

具有高空间均匀性的大面积 MoS2 单层的阻挡辅助气相 CVD

阅读:8
作者:Santhosh Durairaj, P Krishnamoorthy, Navanya Raveendran, Beo Deul Ryu, Chang-Hee Hong, Tae Hoon Seo, S Chandramohan

Abstract

Atomically thin molybdenum disulphide (MoS2) is a direct band gap semiconductor with negatively charged trions and stable excitons in striking contrast to the wonder material graphene. While large-area growth of MoS2 can be readily achieved by gas-phase chemical vapor deposition (CVD), growth of continuous MoS2 atomic layers with good homogeneity is indeed one of the major challenges in vapor-phase CVD involving all-solid precursors. In this study, we demonstrate the growth of large-area continuous single crystal MoS2 monolayers on c-plane sapphire by carefully positioning the substrate using a facile staircase-like barrier. The barrier offered great control in mitigating the secondary and intermediate phases as well as second layer nucleation, and eventually a continuous monolayer with high surface homogeneity is realized. Both micro-Raman and high-resolution transmission electron microscopy (HRTEM) results confirmed the high structural quality of the grown MoS2 layers. Using low temperature photoluminescence spectroscopy, additional pieces of information are provided for the strong band-edge emission in the light of vacancy compensation and formation of Mo-O bonding. The monolayer MoS2 transferred to SiO2/Si exhibited a room temperature field-effect mobility of ∼1.2 cm2 V-1 s-1 in a back-gated two-terminal configuration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。