Anti-inflammatory effects of moxifloxacin and levofloxacin on cadmium-activated human astrocytes: Inhibition of proinflammatory cytokine release, TLR4/STAT3, and ERK/NF-κB signaling pathway

莫西沙星和左氧氟沙星对镉激活的人星形胶质细胞的抗炎作用:抑制促炎细胞因子释放、TLR4/STAT3 和 ERK/NF-κB 信号通路

阅读:5
作者:Suttinee Phuagkhaopong, Jidapha Sukwattanasombat, Kran Suknuntha, Christopher Power, Piyanuch Wonganan, Pornpun Vivithanaporn

Abstract

Cadmium is a non-essential element and neurotoxin that causes neuroinflammation, which leads to neurodegenerative diseases and brain cancer. To date, there are no specific or effective therapeutic agents to control inflammation and alleviate cadmium-induced progressive destruction of brain cells. Fluoroquinolones (FQs), widely used antimicrobials with effective blood-brain barrier penetration, show promise in being repurposed as anti-inflammatory drugs. Therefore, we aimed to test the efficacy of repurposed FQs for the treatment of cadmium-induced inflammation using cultures of U-87 MG human astrocytes and primary human astrocytes. Both FQs abrogated cadmium-induced interleukin (IL)-6 and IL-8 release from human astrocytes in a concentration and time-dependent manner, although levofloxacin had a stronger inhibitory effect than moxifloxacin. The downregulation of inflammatory cytokine release occurred with a concomitant reduction in cadmium-induced elevations in p65 nuclear factor-κB (NF-κB) and extracellular signal-regulated kinases (ERKs) 1/2 phosphorylation. Additionally, levofloxacin treatment significantly alleviated cadmium-induced activation of phosphorylated NF-κB translocation and toll-like receptor (TLR)-4/signal transducer and activator of transcription (STAT) 3 signaling. Transcriptome analysis revealed that modulation of inflammation-related pathways was the most enriched after FQ treatment. Our data suggest that FQs, particularly levofloxacin, attenuate the inflammatory process mediated by cadmium in human astrocytes. These effects may be mediated, at least in part, by inhibition of immune pathways regulated by TLR4, STAT3, ERK MAPK, and NF-κB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。