Identification and molecular characterization of YsaL (Ye3555): a novel negative regulator of YsaN ATPase in type three secretion system of enteropathogenic bacteria Yersinia enterocolitica

YsaL (Ye3555) 的鉴定和分子特性:肠道致病菌小肠结肠炎耶尔森菌三型分泌系统中 YsaN ATPase 的新型负调节剂

阅读:5
作者:Rakesh Chatterjee, Pranab Kumar Halder, Saumen Datta

Abstract

Type Three Secretion (T3S) ATPases are involved in delivery of virulent factors from bacteria to their hosts (through injectisome) in an energy (ATP) dependent manner during pathogenesis. The activities of these ATPases are tightly controlled by their specific regulators. In Yersinia enterocolitica, YsaN was predicted as a putative ATPase of the Ysa-Ysp Type Three Secretion System (T3SS) based on sequence similarity with other T3S ATPases. However detailed study and characterization of YsaN and its regulation remains largely obscure. Here, in this study, we have successfully cloned, over-expressed, purified and characterized the molecular properties of YsaN from Yersinia enterocolitica. YsaN acts as a Mg(2+) dependent ATPase and exists in solution as higher order oligomer (dodecamer). The ATPase activity of oligomeric YsaN is several fold higher than the monomeric form. Furthermore, by employing in silico studies we have identified the existence of a negative regulator of YsaN--a hypothetical protein YE3555 (termed 'YsaL'). To verify the functionality of YsaL, we have evaluated the biochemical and biophysical properties of YsaL. Purified YsaL is dimeric in solution and strongly associates with YsaN to form a stable heterotrimeric YsaL-YsaN complex (stoichiometry--2∶1). The N terminal 6-20 residues of YsaN are invariably required for stable YsaL-YsaN complex formation. YsaL inhibited the ATPase activity of YsaN with a maximum inhibition at the molar ratio 2∶1 (YsaL: YsaN). In short, our studies provide an insight into the presence of YsaN ATPase in Yersinia enterocolitica and its regulator YsaL. Our studies also correlate the functionality of one of the existing protein interaction networks that possibly is indispensable for the energy dependent process of Ysa-Ysp T3SS in pathogenic Yersinia enterocolitica.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。