Cytochrome P450 1B1 inhibition suppresses tumorigenicity of prostate cancer via caspase-1 activation

细胞色素 P450 1B1 抑制通过激活 caspase-1 抑制前列腺癌的致瘤性

阅读:6
作者:Inik Chang, Yozo Mitsui, Seul Ki Kim, Ji Su Sun, Hye Sook Jeon, Jung Yun Kang, Nam Ju Kang, Shinichiro Fukuhara, Ankurpreet Gill, Varahram Shahryari, Z Laura Tabatabai, Kirsten L Greene, Rajvir Dahiya, Dong Min Shin, Yuichiro Tanaka

Abstract

Cytochrome P450 1B1 (CYP1B1) is recognized as a universal tumor biomarker and a feasible therapeutic target due to its specific overexpression in cancer tissues. Despite its up-regulation in prostate cancer (PCa), biological significance and clinicopathological features of CYP1B1 are still elusive. Here, we show that overexpression or hyperactivation of CYP1B1 stimulated proliferative, migratory and invasive potential of non-tumorigenic PCa cells. Attenuation of CYP1B1 with its specific small hairpin (sh) RNAs greatly reduced proliferation through apoptotic cell death and impaired migration and invasion in PCa cells. Intratumoral injection of CYP1B1 shRNA attenuated growth of pre-existing tumors. The antitumor effect of CYP1B1 shRNA was also observed in prostate tumor xenograft mouse models. Among the genes altered by CYP1B1 knockdown, reduction of caspase-1 (CASP1) activity attenuated the antitumor effect of CYP1B1 inhibition. Indeed, CYP1B1 regulates CASP1 expression or activity. Finally, CYP1B1 expression was increased in higher grades of PCa and overall survival was significantly reduced in patients with high levels of CYP1B1 protein. CYP1B1 expression was reversely associated with CASP1 expression in clinical tissue samples. Together, our results demonstrate that CYP1B1 regulates PCa tumorigenesis by inhibiting CASP1 activation. Thus, the CYP1B1-CASP1 axis may be useful as a potential biomarker and a therapeutic target for PCa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。