Contribution of oxidative stress and growth factor receptor transactivation in natriuretic peptide receptor C-mediated attenuation of hyperproliferation of vascular smooth muscle cells from SHR

氧化应激和生长因子受体转录激活在利钠肽受体 C 介导的 SHR 血管平滑肌细胞过度增殖减弱中的作用

阅读:5
作者:Sofiane Rahali, Yuan Li, Madhu B Anand-Srivastava

Abstract

Earlier studies have shown the implication of growth factor receptor activation in angiotensin II (Ang II)-induced hyperproliferation of aortic VSMC as well as in hyperproliferation of VSMC from spontaneously hypertensive rats (SHR). We previously showed that NPR-C specific agonist C-ANP4-23 attenuates the hyperproliferation of VSMC from SHR through the inhibition of MAP kinase, Giα protein signaling and overexpression of cell cycle proteins. The aim of the present study was to investigate if C-ANP4-23- mediated attenuation of hyperproliferation of VSMC from SHR also involves growth factor receptor activation and upstream signaling molecules. For this study, C-ANP 4-23 (10 nmole/kg body weight) was injected intraperitoneally into 2 week-old prehypertensive SHR and Wistar Kyoto (WKY) rats twice per week for 6 weeks. The blood pressure in SHR was significantly attenuated by C-ANP4-23 treatment. In addition, C-ANP4-23 treatment also attenuated the hyperproliferation of VSMC from SHR as well as the enhanced phosphorylation of EGF-R, PDGF-R, IGF-R and c-Src. Furthermore, the enhanced levels of superoxide anion, NADPH oxidase activity, and enhanced expression of Nox4,Nox1,Nox2 and P47phox in SHR compared to WKY rats was also significantly attenuated by C-ANP4-23 treatment. In addition, N-acetyl cysteine (NAC), a scavenger of O2-, inhibitors of growth factor receptors and of c-Src, all inhibited the overexpression of cell cycle proteins cyclin D1 and cdk4 in VSMC from SHR. These results suggest that in vivo treatment of SHR with C-ANP4-23 inhibits the enhanced oxidative stress, c-Src and EGF-R, PDGF-R, IGF-R activation which through the inhibition of overexpression of cell cycle proteins result in the attenuation of hyperproliferation of VSMC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。