Consolidation and performance gains in plasma-sintered printed nanoelectrodes

等离子烧结印刷纳米电极的整合和性能提升

阅读:5
作者:Lukas F Engel, Lola González-García, Tobias Kraus

Abstract

We report on the unusual, advantageous ageing of flexible transparent electrodes (FTEs) that were self-assembled from oleylamine-capped gold nanospheres (AuNPs) by direct nanoimprinting of inks with different particle concentrations (cAu = 3 mg mL-1 to 30 mg mL-1). The resulting lines were less than 2.5 μm wide and consisted of disordered particle assemblies. Small-Angle X-ray Scattering confirmed that particle packing did not change with ink concentration. Plasma sintering converted the printed structures into lines with a thin, electrically conductive metal shell and a less conductive hybrid core. We studied the opto-electronic performance directly after plasma sintering and after fourteen days of storage at 22 °C and 55% rH in the dark. The mean optical transmittance T̄400-800 in the range from 400 nm to 800 nm increased by up to ≈ 3%, while the sheet resistance Rsh strongly decreased by up to ≈ 82% at all concentrations. We correlated the changes with morphological changes visible in scanning and transmission electron microscopy and identified two sequential ageing stages: (I) post-plasma relaxation effects in and consolidation of the shell, and (II) particle re-organization, de-mixing, coarsening, and densification of the core with plating of Au from the core onto the shell, followed by solid-state de-wetting (ink concentrations cAu < 15 mg mL-1) or stability (cAu ≥ 15 mg mL-1). The plating of Au from the hybrid core improved the FTEs' Figure of Merit FOM = T̄400-800·Rsh-1 by up to ≈ 5.8 times and explains the stable value of ≈ 3.3%·Ωsq-1 reached after 7 days of ageing at cAu = 30 mg mL-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。