GPR37 and GPR37L1 differently interact with dopamine 2 receptors in live cells

GPR37 和 GPR37L1 与活细胞中的多巴胺 2 受体相互作用不同

阅读:5
作者:E Hertz, L Terenius, V Vukojević, P Svenningsson

Abstract

Receptor-receptor interactions are essential to fine tune receptor responses and new techniques enable closer characterization of the interactions between involved proteins directly in the plasma membrane. Fluorescence cross-correlation spectroscopy (FCCS), which analyses concurrent movement of bound molecules with single-molecule detection limit, was here used to, in live N2a cells, study interactions between the Parkinson's disease (PD) associated orphan receptor GPR37, its homologue GPR37L1, and the two splice variants of the dopamine 2 receptor (D2R). An interaction between GPR37 and both splice forms of D2R was detected. 4-phenylbutyrate (4-PBA), a neuroprotective chemical chaperone known to increase GPR37 expression at the cell surface, increased the fraction of interacting molecules. The interaction was also increased by pramipexole, a D2R agonist commonly used in the treatment of PD, indicating a possible clinically relevance. Cross-correlation, indicating interaction between GPR37L1 and the short isoform of D2R, was also detected. However, this interaction was not changed with 4-PBA or pramipexole treatment. Overall, these data provide further evidence that heteromeric GPR37-D2R exist and can be pharmacologically modulated, which is relevant for the treatment of PD. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。