Effect of cytochrome P450 inhibition on toxicity of diclofenac in chickens: Unravelling toxicity in Gyps vultures

细胞色素 P450 抑制对双氯芬酸对鸡的毒性的影响:揭示其对秃鹫的毒性

阅读:6
作者:Sara Locke, Vinny Naidoo, Ibrahim Hassan, Neil Duncan

Abstract

Diclofenac was responsible for the decimation of Gyps vulture species on the Indian subcontinent during the 1980s and 1990s. Gyps vultures are extremely sensitive (the lethal dose 50 [LD50] ~ 0.1 mg/kg - 0.2 mg/kg), with toxicity appearing to be linked to metabolic deficiency, demonstrated by the long T1/2 (~12 h - 17 h). This is in striking comparison to the domestic chicken (Gallus gallus domesticus), in which the LD50 is ~10 mg/kg and the T1/2 is ~1 h. The phase 1 cytochrome P450 (CYP) 2C subfamily has been cited as a possible reason for metabolic deficiency. The aim of this study was to determine if CYP2C9 homolog pharmacogenomic differences amongst avian species is driving diclofenac toxicity in Gyps vultures. We exposed each of 10 CYP-inhibited test group chickens to a unique dose of diclofenac (as per the Organisation for Economic Co-operation and Development [OECD] toxicity testing guidelines) and compared the toxicity and pharmacokinetic results to control group birds that received no CYP inhibitor. Although no differences were noted in the LD50 values for each group (11.92 mg/kg in the CYP-inhibited test group and 11.58 mg/kg in the control group), the pharmacokinetic profile of the test group was suggestive of partial inhibition of CYP metabolism. Evaluation of the metabolite peaks produced also suggested partial metabolic inhibition in test group birds, as they produced lower amounts of metabolites for one of the three peaks demonstrated and had higher diclofenac exposure. This pilot study supports the hypothesis that CYP metabolism is varied amongst bird species and may explain the higher resilience to diclofenac in the chicken versus vultures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。