Novel 3D human trophoblast culture to explore T. cruzi infection in the placenta

新型 3D 人类滋养层细胞培养探索胎盘中的克氏锥虫感染

阅读:5
作者:Sofia Apodaca, Marco Di Salvatore, Arturo Muñoz-Calderón, María de Los Ángeles Curto, Silvia A Longhi, Alejandro G Schijman

Discussion

This innovative 3D model offers a simple yet effective approach for generating viable and functional cultures susceptible to T. cruzi infection, presenting significant potential for studying the placental microenvironment.

Methods

We developed a 3D culture model using the human trophoblastic cell line BeWo and nonadherent agarose molds from the MicroTissues® 3D Petri Dish® system. Both small (12-256) and large (12-81) models were tested with varying initial cell numbers. We measured the diameter of the 3D cultures and evaluated cell viability using Trypan Blue dye. Trophoblast functionality was assessed by measuring β-hCG production via ELISA. Cell fusion was evaluated using confocal microscopy, with Phalloidin or ZO-1 marking cell edges and DAPI staining nuclei. T. cruzi infection was assessed by microscopy and quantitative PCR, targeting the EF1-α gene for T. cruzi and GAPDH for BeWo cells, using three parasite strains: VD (isolated from a congenital Chagas disease infant and classified as Tc VI), and K98 and Pan4 (unrelated to congenital infection and classified as Tc I).

Results

Seeding 1000 BeWo cells per microwell in the large model resulted in comparable cellular viability to 2D cultures, with a theoretical diameter of 408.68 ± 12.65 μm observed at 5 days. Functionality, assessed through β-hCG production, exceeded levels in 2D cultures at both 3 and 5 days. T. cruzi infection was confirmed by qPCR and microscopy, showing parasite presence inside the cells for all three tested strains. The distribution and progression of the infection varied with each strain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。