Thermal characteristics and combustion reactivity of coronavirus face masks using TG-DTG-MS analysis

使用 TG-DTG-MS 分析新冠病毒口罩的热特性和燃烧反应性

阅读:5
作者:Nebojša Manić, Bojan Janković, Dragoslava Stojiljković, Panagiotis Angelopoulos, Miloš Radojević

Abstract

The presented paper deals with the influence of the heating rate on combustion characteristics (reactivity and reactivity evaluation, ignition index (D i), burnout index (D f), the combustion performance index (S), and the combustion stability index (R W)) of the protective coronavirus face masks. Two types of commonly used face masks in different state (new and exploited) were investigated by TG-DTG analysis in an air atmosphere, directly coupled with mass spectrometry (MS). Based on the experimental results, the impact of ultimate and proximate analysis data on the evolved gas analysis (EGA) was discussed. Also, the derived values from thermo-analytical (TA) data were compared with the literature reports, related to individual constitutive face mask materials. According to the performed research, it was established that different maximal reaction rate values at various heating rates indicate the complex nature of coronavirus face mask thermo-oxidative degradation, which is stimulated with carbon oxidation reactions and volatile matter (VM) release. By detailed analysis of obtained TG-DTG profiles, it was established that process takes place through the multiple-step reaction pathways, due to many vigorous radical reactions, causes by polymers degradation. The performed research was done to evaluate the possible utilization of coronavirus waste to energy production and sustainable pandemic environmental risk reduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。