Cannabinoid Receptor Interacting Protein 1a Competition with β-Arrestin for CB1 Receptor Binding Sites

大麻素受体相互作用蛋白 1a 与 β-Arrestin 竞争 CB1 受体结合位点

阅读:5
作者:Lawrence C Blume, Theresa Patten, Khalil Eldeeb, Sandra Leone-Kabler, Alexander A Ilyasov, Bradley M Keegan, Jeremy E O'Neal, Caroline E Bass, Roy R Hantgan, W Todd Lowther, Dana E Selley, A Llyn C Howlett

Abstract

Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1R) distal C-terminal-associated protein that alters CB1R interactions with G-proteins. We tested the hypothesis that CRIP1a is capable of also altering CB1R interactions with β-arrestin proteins that interact with the CB1R at the C-terminus. Coimmunoprecipitation studies indicated that CB1R associates in complexes with either CRIP1a or β-arrestin, but CRIP1a and β-arrestin fail to coimmunoprecipitate with each other. This suggests a competition for CRIP1a and β-arrestin binding to the CB1R, which we hypothesized could attenuate the action of β-arrestin to mediate CB1R internalization. We determined that agonist-mediated reduction of the density of cell surface endogenously expressed CB1Rs was clathrin and dynamin dependent and could be modeled as agonist-induced aggregation of transiently expressed GFP-CB1R. CRIP1a overexpression attenuated CP55940-mediated GFP-CB1R as well as endogenous β-arrestin redistribution to punctae, and conversely, CRIP1a knockdown augmented β-arrestin redistribution to punctae. Peptides mimicking the CB1R C-terminus could bind to both CRIP1a in cell extracts as well as purified recombinant CRIP1a. Affinity pull-down studies revealed that phosphorylation at threonine-468 of a CB1R distal C-terminus 14-mer peptide reduced CB1R-CRIP1a association. Coimmunoprecipitation of CB1R protein complexes demonstrated that central or distal C-terminal peptides competed for the CB1R association with CRIP1a, but that a phosphorylated central C-terminal peptide competed for association with β-arrestin 1, and phosphorylated central or distal C-terminal peptides competed for association with β-arrestin 2. Thus, CRIP1a can compete with β-arrestins for interaction with C-terminal CB1R domains that could affect agonist-driven, β-arrestin-mediated internalization of the CB1R.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。