Identification of epidermal growth factor receptor as an immune-related biomarker in epilepsy using multi-transcriptome data

利用多转录组数据鉴定表皮生长因子受体作为癫痫的免疫相关生物标志物

阅读:5
作者:Yujia Luo, Han Xiao, Hui Chen, Hui Gan, Mi Zhang, Ailiyaer Palahati, Yuhao Duan, Xuan Zhai

Background

Epilepsy is a chronic disease that is characterized by transient brain dysfunction caused by an abrupt abnormal neuronal discharge. Recent studies have indicated that the pathways related to inflammation and innate immunity play significant roles in the pathogenesis of epilepsy, suggesting an interrelationship between immunity and inflammatory processes and epilepsy. However, the immune-related mechanisms are still not precisely understood; therefore, this study aimed to explore the immune-related mechanisms in epilepsy disorders, highlight the role of immune cells at the molecular level in epilepsy, and provide therapeutic targets for patients with epilepsy.

Conclusions

In conclusion, the pathophysiology of epilepsy was correlated with EGFR. Thus, EGFR could be a novel biomarker of juvenile focal epilepsies, and our findings provide promising therapeutic targets for epilepsy.

Methods

Brain tissue samples from healthy and epileptic individuals were collected for transcriptome sequencing to identify differentially expressed genes (DEGs) and differentially expressed (DE)-long coding RNAs (lncRNAs). Based on interactions from the miRcode, starBase2.0, miRDB, miRTarBase, TargetScan, and ENCORI databases, a lncRNA-associated competitive endogenous RNA (ceRNA) network was created. Gene ontology and the Kyoto encyclopedia of genes analyses established that the genes in the ceRNA network were mainly enriched in immune-related pathways. Immune cell infiltration, screening, and protein-protein interaction analyses of the immune-related ceRNAs, and correlation analysis between immune-related core messenger RNA (mRNA) and immune cells were also performed.

Results

Nine hub genes (EGFR, GRB2, KRAS, FOS, ESR1, MAPK1, MAPK14, MAPK8, and PPARG) were obtained. Also, 38 lncRNAs, one miRNA (hsa-miR-27a-3p), and one mRNA (EGFR) comprised the final core ceRNA network. Mast cells, plasmacytoid dendritic cells, and immature dendritic cells all showed positive correlations with EGFR, while Cluster of differentiation 56 dim natural killer cells (CD56dim natural killer cells) showed negative correlations. Finally, we employed an epilepsy mouse model to validate EGFR, which is consistent with disease progression. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。