Chaga ( Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity Against Human Lung Adenocarcinoma Cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B)

白桦茸(桦褐孔菌)是未来可能用于肿瘤学的药用真菌吗?一项针对人类肺腺癌细胞 (A549) 和人类支气管上皮细胞 (BEAS-2B) 的化学研究和细胞毒性比较

阅读:11
作者:Antoine Géry, Christelle Dubreule, Véronique André, Jean-Philippe Rioult, Valérie Bouchart, Natacha Heutte, Philippe Eldin de Pécoulas, Tetyana Krivomaz, David Garon

Background

Inonotus obliquus, also known as Chaga, is a parasitic fungus growing on birches and used in traditional medicine (especially by Khanty people) to treat various health problems. In this study, we aimed to quantify the 3 metabolites frequently cited in literature, that is, betulin, betulinic acid, and inotodiol in the Chaga recently discovered in forests located in Normandy (France), and to compare their concentrations with Ukrainian and Canadian Chaga. This study also explores the cytotoxicity of the French Chaga against cancer-derived cells and transformed cells.

Methods

A quantification method by HPLC-MS-MS (high-performance liquid chromatography-tandem mass spectrometry) of betulin, betulinic acid, and inotodiol was developed to study the French Chaga and compare the concentration of these metabolites with extracts provided from Chaga growing in Canada and Ukraine. This method was also used to identify and quantify those 3 compounds in other traditional preparations of Chaga (aqueous extract, infusion, and decoction). Among these preparations, the aqueous extract that contains betulin, betulinic acid, and inotodiol was chosen to evaluate and compare its cytotoxic activity toward human lung adenocarcinoma cells (A549 line) and human bronchial epithelial cells (BEAS-2B line).

Results

French Chaga contains betulin and betulinic acid at higher levels than in other Chaga, whereas the concentration of inotodiol is greater in the Canadian Chaga. Moreover, the results highlighted a cytotoxic activity of the Chaga's aqueous extract after 48 and 72 hours of exposure with a higher effect on cancer-derived cells A549 than on normal transformed cells BEAS-2B ( P = 0.025 after 48 hours of exposure and P = 0.004 after 72 hours of exposure).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。