Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol

使用环糊精监测跨双层运动和胆固醇的差异脂质亲和力

阅读:9
作者:R Leventis, J R Silvius

Abstract

In view of the demonstrated cholesterol-binding capabilities of certain cyclodextrins, we have examined whether these agents can also catalyze efficient transfer of cholesterol between lipid vesicles. We here demonstrate that beta- and gamma-cyclodextrins can dramatically accelerate the rate of cholesterol transfer between lipid vesicles under conditions where a negligible fraction of the sterol is bound to cyclodextrin in steady state. beta- and gamma-cyclodextrin enhance the rate of transfer of cholesterol between vesicles by a larger factor than they accelerate the transfer of phospholipid, whereas, for alpha- and methyl-beta-cyclodextrin, the opposite is true. Analysis of the kinetics of cyclodextrin-mediated cholesterol transfer between large unilamellar vesicles composed mainly of 1-stearoyl-2-oleoyl phosphatidylcholine (SOPC) or SOPC/cholesterol indicates that transbilayer flip-flop of cholesterol is very rapid (halftime < 1-2 min at 37 degrees C). Using beta-cyclodextrin to accelerate cholesterol transfer, we have measured the relative affinities of cholesterol for a variety of different lipid species. Our results show strong variations in cholesterol affinity for phospholipids bearing different degrees of chain unsaturation and lesser, albeit significant, effects of phospholipid headgroup structure on cholesterol-binding affinity. Our findings also confirm previous suggestions that cholesterol interacts with markedly higher affinity with sphingolipids than with common membrane phospholipids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。