Functional regulatory T cells produced by inhibiting cyclic nucleotide phosphodiesterase type 3 prevent allograft rejection

通过抑制环核苷酸磷酸二酯酶 3 型产生的功能性调节性 T 细胞可防止同种异体移植排斥

阅读:6
作者:Gang Feng, Satish N Nadig, Liselotte Bäckdahl, Stephan Beck, Ross S Francis, Alexandru Schiopu, Andrew Whatcott, Kathryn J Wood, Andrew Bushell

Abstract

Regulatory T cells (T(regs)) manipulated ex vivo have potential as cellular therapeutics in autoimmunity and transplantation. Although it is possible to expand naturally occurring T(regs), an attractive alternative possibility, particularly suited to solid organ and bone marrow transplantation, is the stimulation of total T cell populations with defined allogeneic antigen-presenting cells (APCs) under conditions that lead to the generation or expansion of donor-reactive, adaptive T(regs). Here we demonstrate that stimulation of mouse CD4(+) T cells by immature allogeneic dendritic cells combined with pharmacological inhibition of phosphodiesterase 3 (PDE) resulted in a functional enrichment of Foxp3(+) T cells. Without further manipulation or selection, the resultant population delayed skin allograft rejection mediated by polyclonal CD4(+) effectors or donor-reactive CD8(+) T cell receptor transgenic T cells and inhibited both effector cell proliferation and T cell priming for interferon-γ production. Notably, PDE inhibition also enhanced the enrichment of human Foxp3(+) CD4(+) T cells driven by allogeneic APCs. These cells inhibited T cell proliferation in a standard in vitro mixed lymphocyte assay and, moreover, attenuated the development of vasculopathy mediated by autologous peripheral blood mononuclear cells in a functionally relevant humanized mouse transplant model. These data establish a method for the ex vivo generation of graft-reactive, functional mouse and human T(regs) that uses a clinically approved agent, making pharmacological PDE inhibition a potential strategy for T(reg)-based therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。