Differential immunomodulation of porcine bone marrow derived dendritic cells by E. coli Nissle 1917 and β-glucans

大肠杆菌 Nissle 1917 和 β-葡聚糖对猪骨髓来源的树突状细胞的差异免疫调节

阅读:4
作者:Mirelle Geervliet, Laura C P Lute, Christine A Jansen, Victor P M G Rutten, Huub F J Savelkoul, Edwin Tijhaar

Abstract

In early life and around weaning, pigs are at risk of developing infectious diseases which compromise animal welfare and have major economic consequences for the pig industry. A promising strategy to enhance resistance against infectious diseases is immunomodulation by feed additives. To assess the immune stimulating potential of feed additives in vitro, bone marrow-derived dendritic cells were used. These cells play a central role in the innate and adaptive immune system and are the first cells encountered by antigens that pass the epithelial barrier. Two different feed additives were tested on dendritic cells cultured from fresh and cryopreserved bone marrow cells; a widely used commercial feed additive based on yeast-derived β-glucans and the gram-negative probiotic strain E. coli Nissle 1917. E. coli Nissle 1917, but not β-glucans, induced a dose-dependent upregulation of the cell maturation marker CD80/86, whereas both feed additives induced a dose-dependent production of pro- and anti-inflammatory cytokines, including TNFα, IL-1β, IL-6 and IL-10. Furthermore, E. coli Nissle 1917 consistently induced higher levels of cytokine production than β-glucans. These immunomodulatory responses could be assessed by fresh as well as cryopreserved in vitro cultured porcine bone marrow-derived dendritic cells. Taken together, these results demonstrate that both β-glucans and E. coli Nissle 1917 are able to enhance dendritic cell maturation, but in a differential manner. A more mature dendritic cell phenotype could contribute to a more efficient response to infections. Moreover, both fresh and cryopreserved bone marrow-derived dendritic cells can be used as in vitro pre-screening tools which enable an evidence based prediction of the potential immune stimulating effects of different feed additives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。