Brushing Effect on the Properties of Glass Ionomer Cement Modified by Hydroxyapatite Nanoparticles or by Bioactive Glasses

刷牙对羟基磷灰石纳米粒子或生物活性玻璃改性玻璃离子水门汀性能的影响

阅读:8
作者:Rafael A Martins, Luana M Marti, Ana C B Mendes, Camila Fragelli, Mario Cilense, Angela C C Zuanon

Abstract

This study evaluated the physical and mechanical properties of glass ionomer cement (GIC) associated with 5% hydroxyapatite nanoparticles (NPHAps) and 10% bioactive glass (BAG) 45S5 before and after brushing at different storage times. Surface roughness was evaluated using a rugosimeter, Vickers hardness using a microdurometer, and mass variation measured in an analytical balance at 1, 7, 15, 30, and 60 days before and after the brushing test, with the aid of toothbrushing simulator and soft bristle toothbrushes. Nonnormal distribution was observed, and the nonparametric Wilcoxon and Kruskal-Wallis tests followed by Dunn's were performed, with a significance level of 5%. We observed higher values for mass loss on the first day for all groups. The surface roughness was lower in the control and NP groups, 30 days after brushing. Higher values for hardness were found in the control group and lower ones for NP, after brushing. The control and BAG groups presented a decrease in hardness over time. The NP group presented the highest values before brushing, while the control group had the highest values after brushing. The association of NPHPa with the GIC is the most promising combination, since it presented satisfactory values for surface hardness. However, conventional GIC not associated with NPHPa or BAG is still an option, since it is available in the market and the most economically viable option.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。