Subtle changes at the variable domain interface of the T-cell receptor can strongly increase affinity

细胞受体可变结构域界面的细微变化可显著增加亲和力

阅读:9
作者:Preeti Sharma, David M Kranz

Abstract

Most affinity-maturation campaigns for antibodies and T-cell receptors (TCRs) operate on the residues at the binding site, located within the loops known as complementarity-determining regions (CDRs). Accordingly, mutations in contact residues, or so-called "second shell" residues, that increase affinity are typically identified by directed evolution involving combinatorial libraries. To determine the impact of residues located at a distance from the binding site, here we used single-codon libraries of both CDR and non-CDR residues to generate a deep mutational scan of a human TCR against the cancer antigen MART-1·HLA-A2. Non-CDR residues included those at the interface of the TCR variable domains (Vα and Vβ) and surface-exposed framework residues. Mutational analyses showed that both Vα/Vβ interface and CDR residues were important in maintaining binding to MART-1·HLA-A2, probably due to either structural requirements for proper Vα/Vβ association or direct contact with the ligand. More surprisingly, many Vα/Vβ interface substitutions yielded improved binding to MART-1·HLA-A2. To further explore this finding, we constructed interface libraries and selected them for improved stability or affinity. Among the variants identified, one conservative substitution (F45βY) was most prevalent. Further analysis of F45βY showed that it enhanced thermostability and increased affinity by 60-fold. Thus, introducing a single hydroxyl group at the Vα/Vβ interface, at a significant distance from the TCR·peptide·MHC-binding site, remarkably affected ligand binding. The variant retained a high degree of specificity for MART-1·HLA-A2, indicating that our approach provides a general strategy for engineering improvements in either soluble or cell-based TCRs for therapeutic purposes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。