Dimethyl fumarate attenuates experimental autoimmune neuritis through the nuclear factor erythroid-derived 2-related factor 2/hemoxygenase-1 pathway by altering the balance of M1/M2 macrophages

富马酸二甲酯通过改变 M1/M2 巨噬细胞的平衡,通过核因子红细胞衍生 2 相关因子 2/血氧合酶-1 通路减轻实验性自身免疫性神经炎

阅读:7
作者:Ranran Han, Jinting Xiao, Hui Zhai, Junwei Hao

Background

Guillain-Barré syndrome (GBS) is an acute, post-infectious, immune-mediated, demyelinating disease of peripheral nerves and nerve roots. Dimethyl fumarate (DMF), a fumaric acid ester, exhibits various biological activities, including multiple immunomodulatory and neuroprotective effects. However, the potential mechanism underlying the effect of DMF in GBS animal model experimental autoimmune neuritis (EAN) is unclear.

Conclusions

Taken together, our data demonstrate that DMF can effectively suppress EAN, and the mechanism involves altering the balance of M1/M2 macrophages and attenuating inflammation.

Methods

Using EAN, an established GBS model, we investigated the effect of DMF by assessing clinical score, histological staining and electrophysiological studies. Then, we further explored the potential mechanism by Western blot analysis, flow cytometry, fluorescence immunohistochemistry, PCR, and ELISA analysis. The Mann-Whitney U test was used to compare differences between control group and treatment groups where appropriate.

Results

DMF treatment reduced the neurological deficits by ameliorating inflammatory cell infiltration and demyelination of sciatic nerves. In addition, DMF treatment decreased the level of pro-inflammatory M1 macrophages while increasing the number of anti-inflammatory M2 macrophages in the spleens and sciatic nerves of EAN rats. In RAW 264.7, a shift in macrophage polarization from M1 to M2 phenotype was demonstrated to be depended on DMF application. In sciatic nerves, DMF treatment elevated the level of the antioxidant transcription factor nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and its target gene hemoxygenase-1 (HO-1) which could facilitate macrophage polarization toward M2 type. Moreover, DMF improved the inflammatory milieu in spleens of EAN rats, characterized by downregulation of messenger RNA (mRNA) of IFN-γ, TNF-α, IL-6, and IL-17 and upregulation of mRNA level of IL-4 and IL-10. Conclusions: Taken together, our data demonstrate that DMF can effectively suppress EAN, and the mechanism involves altering the balance of M1/M2 macrophages and attenuating inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。