Enhancing Adoptive Cell Therapy of Cancer through Targeted Delivery of Small-Molecule Immunomodulators to Internalizing or Noninternalizing Receptors

通过向内化或非内化受体靶向递送小分子免疫调节剂来增强癌症的过继细胞治疗

阅读:7
作者:Yiran Zheng, Li Tang, Llian Mabardi, Sudha Kumari, Darrell J Irvine

Abstract

Adoptive cell therapy (ACT) has achieved striking efficacy in B-cell leukemias, but less success treating other cancers, in part due to the rapid loss of ACT T-cell effector function in vivo due to immunosuppression in solid tumors. Transforming growth factor-β (TGF-β) signaling is an important mechanism of immune suppression in the tumor microenvironment, but systemic inhibition of TGF-β is toxic. Here we evaluated the potential of targeting a small molecule inhibitor of TGF-β to ACT T-cells using PEGylated immunoliposomes. Liposomes were prepared that released TGF-β inhibitor over ∼3 days in vitro. We compared the impact of targeting these drug-loaded vesicles to T-cells via an internalizing receptor (CD90) or noninternalizing receptor (CD45). When lymphocytes were preloaded with immunoliposomes in vitro prior to adoptive therapy, vesicles targeted to both CD45 and CD90 promoted enhanced T-cell expression of granzymes relative to free systemic drug administration, but only targeting to CD45 enhanced accumulation of granzyme-expressing T-cells in tumors, which correlated with the greatest enhancement of T-cell antitumor activity. By contrast, when administered i.v. to target T-cells in vivo, only targeting of a CD90 isoform expressed exclusively by the donor T-cells led to greater tumor regression over equivalent doses of free systemic drug. These results suggest that in vivo, targeting of receptors uniquely expressed by donor T-cells is of paramount importance for maximal efficacy. This immunoliposome strategy should be broadly applicable to target exogenous or endogenous T-cells and defines parameters to optimize delivery of supporting (or suppressive) drugs to these important immune effectors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。