Conclusion
CSO treatment can alleviate ischemic stroke injury via ferroptosis inhibition, which provides a new potential therapeutic mechanism for CSO neuroprotection against ischemic stroke.
Methods
We conducted the subcutaneous injection of 1.3 mL/kg CSO every other day for 3 weeks on rats with middle cerebral artery occlusion-reperfusion (MCAO-R) injury. We used Garcia Test, TTC staining, HE, Nissl and NeuN staining, Evans blue test, 68 Ga-citrate PET, Western blot, immunofluorescence staining, Elisa kits, and transmission electron microscopy to detect the infarct volume, neural injuries, and ferroptosis-related indexes.
Results
CSO treatment could significantly ameliorate MCAO-R-induced neurological dysfunction in a male rat model. Furthermore, it reduced infarct volume and neuronal injuries; protected BBB integrity; reduced the influx of iron ion, TF, and TF receptors; up-regulated anti-ferroptosis proteins (GPX4, xCT, HO1, FTH1), while down-regulating ferroptosis-related protein ACSL4; increased the activity of GSH and SOD; and decreased MDA and LPO levels. Mitochondrial destruction induced by ischemic stroke was also alleviated by CSO treatment.
