Recombinant Decoy Exhibits Broad Protection against Omicron and Resistance Potential to Future Variants

重组诱饵对 Omicron 具有广泛的保护作用,并对未来的变体具有抗性潜力

阅读:12
作者:Haoneng Tang, Yong Ke, Lei Wang, Mingyuan Wu, Tao Sun, Jianwei Zhu

Abstract

The Omicron variant has swept through most countries and become a dominant circulating strain, replacing the Delta variant. The evolutionary history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggests that the onset of another variant (possibly another variant of concern (VOC) is inevitable. Therefore, the development of therapeutics that enable treatments for all Omicron-included VOCs/variants of interest (VOIs) and future variants is desired. Recently, the recombinant receptor decoy therapeutic angiotensin-converting enzyme 2 (ACE2)-Fc has exhibited good safety in a phase 1 clinical trial; therefore, its variant-resistant profile needs to be understood. Here, we conducted a comprehensive evaluation of its neutralization breadth against the Omicron variant and other VOCs/VOIs. Furthermore, to evaluate its resistance to future variants, we investigated its ability to neutralize various single-residue mutated variants. Next, we demonstrated its resistance to evasion via an experiment that rapidly and effectively stimulates virus evolution with a replication-competent virus model. In addition, we evaluated its efficacy for cocktail therapy. The combination of ACE2-Fc and neutralizing antibodies showed both efficacy and breadth in the simulation experiment. The underlying mechanism was revealed to be a synergistic effect in the cocktails. Collectively, this study deepens the understanding of the resistance profile of recombinant receptor decoy therapeutics and highlights the potential value of ACE2-Fc and neutralizing antibody cocktails in the subsequent anti-SARS-CoV-2 campaign. Furthermore, we also provide an effective method to study the resistance profile of antiviral agents and rapidly screen for potential cocktails to combat future variants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。