Endocytic pathways mediating oligomeric Abeta42 neurotoxicity

介导寡聚 Abeta42 神经毒性的内吞途径

阅读:7
作者:Chunjiang Yu, Evelyn Nwabuisi-Heath, Kevin Laxton, Mary Jo Ladu

Background

One pathological hallmark of Alzheimer's disease (AD) is amyloid plaques, composed primarily of amyloid-beta peptide (Abeta). Over-production or diminished clearance of the 42 amino acid form of Abeta (Abeta42) in the brain leads to accumulation of soluble Abeta and plaque formation. Soluble oligomeric Abeta (oAbeta) has recently emerged to be as a likely proximal cause of AD.

Conclusions

These data suggest that dynamin-mediated and RhoA-regulated endocytosis are integral steps for oligomeric Abeta42-induced neurotoxicity and intraneuronal Abeta accumulation.

Results

Here we demonstrate that endocytosis is critical in mediating oAbeta42-induced neurotoxicity and intraneuronal accumulation of Abeta. Inhibition of clathrin function either with a pharmacological inhibitor, knock-down of clathrin heavy chain expression, or expression of the dominant-negative mutant of clathrin-assembly protein AP180 did not block oAbeta42-induced neurotoxicity or intraneuronal accumulation of Abeta. However, inhibition of dynamin and RhoA by expression of dominant negative mutants reduced neurotoxicity and intraneuronal Abeta accumulation. Pharmacologic inhibition of the dynamin-mediated endocytic pathway by genistein also reduced neurotoxicity. Conclusions: These data suggest that dynamin-mediated and RhoA-regulated endocytosis are integral steps for oligomeric Abeta42-induced neurotoxicity and intraneuronal Abeta accumulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。