Solvent Engineering for Nonpolar Substrate Glycosylation Catalyzed by the UDP-Glucose-Dependent Glycosyltransferase UGT71E5: Intensification of the Synthesis of 15-Hydroxy Cinmethylin β-d-Glucoside

UDP-葡萄糖依赖性糖基转移酶 UGT71E5 催化非极性底物糖基化的溶剂工程:强化 15-羟基辛甲基 β-d-葡萄糖苷的合成

阅读:4
作者:Jihye Jung, Hui Liu, Annika J E Borg, Bernd Nidetzky

Abstract

Sugar nucleotide-dependent glycosyltransferases are powerful catalysts of the glycosylation of natural products and xenobiotics. The low solubility of the aglycone substrate often limits the synthetic efficiency of the transformation catalyzed. Here, we explored different approaches of solvent engineering for reaction intensification of β-glycosylation of 15HCM (a C15-hydroxylated, plant detoxification metabolite of the herbicide cinmethylin) catalyzed by safflower UGT71E5 using UDP-glucose as the donor substrate. Use of a cosolvent (DMSO, ethanol, and acetonitrile; ≤50 vol %) or a water-immiscible solvent (n-dodecane, n-heptane, n-hexane, and 1-hexene) was ineffective due to enzyme activity and stability, both impaired ≥10-fold compared to a pure aqueous solvent. Complexation in 2-hydroxypropyl-β-cyclodextrin enabled dissolution of 50 mM 15HCM while retaining the UGT71E5 activity (∼0.32 U/mg) and stability. Using UDP-glucose recycling, 15HCM was converted completely, and 15HCM β-d-glucoside was isolated in 90% yield (∼150 mg). Collectively, this study highlights the requirement for a mild, enzyme-compatible strategy for aglycone solubility enhancement in glycosyltransferase catalysis applied to glycoside synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。