Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations

肌萎缩侧索硬化症中的 NHEJ 修复受损与 TDP-43 突变有关

阅读:5
作者:Anna Konopka, Donna R Whelan, Md Shafi Jamali, Emma Perri, Hamideh Shahheydari, Reka P Toth, Sonam Parakh, Tina Robinson, Alison Cheong, Prachi Mehta, Marta Vidal, Audrey M G Ragagnin, Ivan Khizhnyak, Cyril J Jagaraj, Jasmin Galper, Natalie Grima, Anand Deva, Sina Shadfar, Garth A Nicholson, Shu Yan

Background

Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in motor neurons of almost all amyotrophic lateral sclerosis (ALS) patients, and mutations in TDP-43 are also present in ALS. Loss and gain of TDP-43 functions are implicated in pathogenesis, but the mechanisms are unclear. While the RNA functions of TDP-43 have been widely investigated, its DNA binding roles remain unclear. However, recent studies have implicated a role for TDP-43 in the DNA damage response.

Conclusions

This study reveals that TDP-43 functions in DNA repair, but loss of this function triggers DNA damage and is associated with key pathological features of ALS.

Methods

We used NSC-34 motor neuron-like cells and primary cortical neurons expressing wildtype TDP-43 or TDP-43 ALS associated mutants (A315T, Q331K), in which DNA damage was induced by etoposide or H2O2 treatment. We investigated the consequences of depletion of TDP-43 on DNA repair using small interfering RNAs. Specific non homologous end joining (NHEJ) reporters (EJ5GFP and EJ2GFP) and cells lacking DNA-dependent serine/threonine protein kinase (DNA-PK) were used to investigate the role of TDP-43 in DNA repair. To investigate the recruitment of TDP-43 to sites of DNA damage we used single molecule super-resolution microscopy and a co-immunoprecipitation assay. We also investigated DNA damage in an ALS transgenic mouse model, in which TDP-43 accumulates pathologically in the cytoplasm. We also examined fibroblasts derived from ALS patients bearing the TDP-43 M337V mutation for evidence of DNA damage.

Results

We demonstrate that wildtype TDP-43 is recruited to sites of DNA damage where it participates in classical NHEJ DNA repair. However, ALS-associated TDP-43 mutants lose this activity, which induces DNA damage. Furthermore, DNA damage is present in mice displaying TDP-43 pathology, implying an active role in neurodegeneration. Additionally, DNA damage triggers features typical of TDP-43 pathology; cytoplasmic mis-localisation and stress granule formation. Similarly, inhibition of NHEJ induces TDP-43 mis-localisation to the cytoplasm. Conclusions: This study reveals that TDP-43 functions in DNA repair, but loss of this function triggers DNA damage and is associated with key pathological features of ALS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。