Clarifying the association of CSF Aβ, tau, BACE1, and neurogranin with AT(N) stages in Alzheimer disease

阐明脑脊液 Aβ、tau、BACE1 和神经颗粒蛋白与阿尔茨海默病 AT(N) 阶段的关联

阅读:5
作者:Sylvain Lehmann, Susanna Schraen-Maschke, Luc Buée, Jean-Sébastien Vidal, Constance Delaby, Christophe Hirtz, Frédéric Blanc, Claire Paquet, Bernadette Allinquant, Stéphanie Bombois, Audrey Gabelle, Olivier Hanon; Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Background

Current AT(N) stratification for Alzheimer's disease (AD) accounts for complex combinations of amyloid (A), tau proteinopathy (T) and neurodegeneration (N) signatures. Understanding the transition between these different stages is a major challenge, especially in view of the recent development of disease modifying therapy.

Conclusions

The early transition to an A + phenotype (A + T-N-) primarily impacts synaptic function. The appearance of T + and then N + is associated with a significant and progressive increase in pathological Alzheimer's disease biomarkers. Our main finding is that CSF pTau181 is an indicator of N + rather than T + , and that N + is associated with elevated levels of BACE1 protein and beta-amyloid peptides. This increase may potentially fuel the amyloid cascade in a positive feedback loop. Overall, our data provide further insights into understanding the interconnected pathological processes of amyloid, tau, and neurodegeneration underlying Alzheimer's disease.

Methods

This is an observational study, CSF levels of Tau, pTau181, pTau217, Aβ38/40/42, sAPPα/β, BACE1 and neurogranin were measured in the BALTAZAR cohort of cognitively impaired patients and in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Biomarkers levels were related to the AT(N) framework. (A) and (T) were defined in BALTAZAR with CSF Aβ42/40 ratio and pTau217 respectively, and in ADNI with amyloid and tau PET. (N) was defined using total CSF tau in both cohorts.

Results

As expected, CSF Aβ42 decreased progressively with the AD continuum going from the A-T-N- to the A + T + N + profile. On the other hand, Tau and pTau181 increased progressively with the disease. The final transition from A + T + N- to A + T + N + led to a sharp increase in Aβ38, Aβ42 and sAPP levels. Synaptic CSF biomarkers BACE1 and neurogranin, were lowest in the initial A + T-N- stage and increased with T + and N + . CSF pTau181 and total tau were closely related in both cohorts. Conclusions: The early transition to an A + phenotype (A + T-N-) primarily impacts synaptic function. The appearance of T + and then N + is associated with a significant and progressive increase in pathological Alzheimer's disease biomarkers. Our main finding is that CSF pTau181 is an indicator of N + rather than T + , and that N + is associated with elevated levels of BACE1 protein and beta-amyloid peptides. This increase may potentially fuel the amyloid cascade in a positive feedback loop. Overall, our data provide further insights into understanding the interconnected pathological processes of amyloid, tau, and neurodegeneration underlying Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。